Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutr Neurosci ; 26(4): 275-289, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35282801

RESUMO

Inflammation and oxidative stress are critical events involved in neurodegeneration. In animal models, it has been shown that chronic consumption of a hypercaloric diet, which leads to inflammatory processes, affects the hippocampus, a brain region fundamental for learning and memory processes. In addition, advanced age and menopause are risk factors for neurodegeneration. Hormone replacement therapy (HRT) ameliorates menopause symptoms. Tibolone (TB), a synthetic hormone, exerts estrogenic, progestogenic and androgenic effects on different tissues. We aimed to determine the effect of short-term TB administration on oxidative stress and inflammation markers in the hippocampus of ovariectomized rats fed a high-fat-and-fructose diet (HFFD). Adult female rats were ovariectomized (OVX) and fed standard diet or HFFD-consisting of 10% lard supplemented chow and 20% high-fructose syrup in the drinking water-and administered vehicle or TB (1 mg/kg for seven days). Finally, we administered hormone receptor antagonists (MPP, RU486 or FLU) to each of the OVX + HFFD + TB groups. Bodyweight, triglycerides and cholesterol, oxidative stress and inflammation markers, and the activity and expression of antioxidant enzymes were quantified in the hippocampus of each experimental group. We observed that short-term TB administration significantly reduced body weight, AGEs, MDA levels, increased SOD and GPx activity, improved GSH/GSSG ratio, and reduced IL-6 and TNF-α. Our findings suggest that short-term administration of TB decreases oxidative stress and reduces inflammation caused by HFFD and early estrogenic decline. These effects occurred via estrogen receptor alpha.


Assuntos
Frutose , Estresse Oxidativo , Ratos , Feminino , Animais , Frutose/efeitos adversos , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Peso Corporal , Hipocampo/metabolismo , Hormônios/metabolismo , Hormônios/farmacologia
2.
J Ethnopharmacol ; 296: 115492, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35724746

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bocconia arborea S. Watson (Papaveraceae) is known as "palo llora sangre" and is used in Mexican traditional medicine for the treatment of infections, it is also used as anxiolytic, analgesic, and antidiabetic, among others. AIM OF THE STUDY: to evaluate the antinociceptive and gastroprotective activities of extracts from B. arborea and dihydrosanguinarine (DHS) in murine models. MATERIALS AND METHODS: Organic extracts [hexane (HEX), dichloromethane (DCM) and methanol (MeOH)] were obtained by maceration. DHS was isolated and purified from HEX and DCM by precipitation and chromatographic column, respectively. Organic extracts and DHS were evaluated to determine their antinociceptive effect using formalin test in murine model. Also, the ambulatory effect of the HEX and DHS was determined in Open field test. The possible mechanism of action of DHS was explored in the presence of naltrexone (NTX, 1 mg/kg, i.p.), and picrotoxin (PTX, 1 mg/kg, i.p.). Gastric damage as possible adverse effect or gastroprotection were also investigated. Whereas DHS acute toxicological study was done, and 100 mg/kg of DHS was examined by electroencephalographic (EEG) analysis to discard neurotoxic effects. RESULTS: The B. arborea extracts significantly showed effects in both neurogenic and inflammatory phases of the formalin test, where the HEX extract reached the major antinociceptive effect. A significant and dose-response (10, 30, and 100 mg/kg) antinociceptive activity was observed with the HEX (ED50 = 69 mg/kg) and DHS (ED50 = 85 mg/kg) resembling the effect of the reference analgesic drug tramadol (30 mg/kg). The significant effect of DHS was inhibited in the presence of NTX and PTX. Neither the extracts or DHS produced sedative effects or gastric damage per se at antinociceptive doses. The EEG analysis demonstrated central depressant activity but not sedative or neurotoxic effects at the highest antinociceptive dosage tested, and LD50 is higher than 2000 mg/kg. CONCLUSIONS: HEX, DCM, and MeOH extracts showed significant antinociceptive activity, and DHS was identified as one of bioactive compounds without producing sedative, neurotoxic or gastric damage effects, as possible adverse effects reported for analgesic drugs. A role of opioid and GABAA neurotransmission appears to be involved as mechanisms of action of DHS, suggesting its potential for pain therapy and reinforcing the traditional use of B. arborea.


Assuntos
Dor , Papaveraceae , Analgésicos/uso terapêutico , Analgésicos/toxicidade , Animais , Benzofenantridinas , Modelos Animais de Doenças , Isoquinolinas , Metanol/uso terapêutico , Camundongos , Dor/tratamento farmacológico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
3.
J Med Food ; 25(6): 588-596, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35708636

RESUMO

Insulin secretion and GLUT4 expression are two critical events in glucose regulation. The receptors G-protein-coupled receptor 40 (GPR40) and peroxisome proliferator-activated receptor-gamma (PPARγ) modulate these processes, and they represent potential therapeutic targets for new antidiabetic agent's design. Cucurbita ficifolia fruit is used in traditional medicine for diabetes control. Previous studies demonstrated several effects: a hypoglycemic effect mediated by an insulin secretagogue action, antihyperglycemic effect, and promoting liver glycogen storage. Anti-inflammatory and antioxidant effects were also reported. Moreover, some of its phytochemicals have been described, including d-chiro-inositol. However, to understand these effects integrally, other active principles should be investigated. The aim was to perform a chemical fractionation guided by bioassay to isolate and identify other compounds from C. ficifolia fruit that explain its hypoglycemic action as insulin secretagogue, its antihyperglycemic effect by PPARγ activation, and on liver glycogen storage. Three different preparations of C. ficifolia were tested in vivo. Ethyl acetate fraction derived from aqueous extract showed antihyperglycemic effect in an oral glucose tolerance test and was further fractioned. The insulin secretagogue action was tested in RINm5F cells. For the PPARγ activation, C2C12 myocytes were treated with the fractions, and GLUT4 mRNA expression was measured. Chemical fractionation resulted in the isolation and identification of ß-sitosterol and 4-hydroxybenzoic acid (4-HBA), which increased insulin secretion, GLUT4, PPARγ, and adiponectin mRNA expression, in addition to an increase in glycogen storage. 4-HBA exhibited an antihyperglycemic effect, while ß-sitosterol showed hypoglycemic effect, confirming the wide antidiabetic related results we found in our in vitro models. An in silico study revealed that 4-HBA and ß-sitosterol have potential as dual agonists on PPARγ and GPR40 receptors. Both compounds should be considered in the development of new antidiabetic drug development.


Assuntos
Cucurbita , Diabetes Mellitus Experimental , Animais , Cucurbita/química , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Glicogênio Hepático , PPAR gama/agonistas , PPAR gama/genética , Parabenos , Extratos Vegetais/química , RNA Mensageiro , Secretagogos/uso terapêutico , Sitosteroides
4.
Eur J Pharmacol ; 907: 174244, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34116041

RESUMO

The current manuscript describes two molecules that were designed against PPARγ and GPR40 receptors. The preparation of the compounds was carried out following a synthetic route of multiple steps. Then, the mRNA expression levels of PPARγ, GLUT4, and GPR40 induced by compounds were measured and quantified in adipocyte and ß-pancreatic cell cultures. The synthesized compound 1 caused an increase in the 4-fold expression of mRNA of PPARγ regarding the control and had a similar behavior to the pioglitazone, while compound 2 only increased 2-fold the expression. Also, the compound 1 increased to 7-fold the GLUT4 expression levels, respect to the control and twice against the pioglitazone. On the other hand, the 1 increase 3-fold GPR40 expression, and compound 2 had a minor activity. Besides, 1 and 2 showed a moderated increase on insulin secretion and calcium mobilization versus the glibenclamide. Based on the molecular docking studies, the first compound had a similar conformation to co-crystal ligands into the binding site of both receptors. The poses were docked keeping the most important interactions and maintaining the interaction along the Molecular Dynamics simulation (20 ns). Finally, compound (1) showed an antihyperglycemic effect at 5 mg/kg, however at higher doses of 25 mg/kg it controlled blood glucose levels associated with feeding intake and without showing the adverse effects associated with insulin secretagogues (hypoglycemia). For these reasons, we have concluded that molecule 1 acts as a dual PPARγ and GPR40 agonist offering a better glycemic control than current treatments.


Assuntos
Hipoglicemiantes , Diabetes Mellitus Tipo 2 , Insulina , Pioglitazona/farmacologia , Tiazolidinedionas/farmacologia
5.
Inflamm Res ; 70(5): 605-618, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33877377

RESUMO

OBJECTIVE: To determine the involvement of TNF-α and glycine receptors in the inhibition of pro-inflammatory adipokines in 3T3-L1 cells. METHODS: RT-PCR evidenced glycine receptors in 3T3-L1 adipocytes. 3T3-L1 cells were transfected with siRNA for the glycine (Glrb) and TNF1a (Tnfrsf1a) receptors and confirmed by confocal microscopy. Transfected cells were treated with glycine (10 mM). The expressions of TNF-α and IL-6 mRNA were measured by qRT-PCR, while concentrations were quantified by ELISA. RESULTS: Glycine decreased the expression and concentration of TNF-α and IL-6; this effect did not occur in the absence of TNF-α receptor due to siRNA. In contrast, glycine produced only slight changes in the expression of TNF-α and IL-6 in the absence of the glycine receptor due to siRNA. A docking analysis confirmed the possibility of binding glycine to the TNF-α1a receptor. CONCLUSION: These findings support the idea that glycine could partially inhibit the binding of TNF-α to its receptor and provide clues about the mechanisms by which glycine inhibits the secretion of pro-inflammatory adipokines in adipocytes through the TNF-α receptor.


Assuntos
Adipócitos/metabolismo , Citocinas/metabolismo , Glicina/farmacologia , Receptores Tipo II do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Células 3T3-L1 , Adiponectina/genética , Animais , Citocinas/genética , Expressão Gênica , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Receptores de Glicina/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética
6.
J Ethnopharmacol ; 273: 113948, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-33610712

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Achillea millefolium L. (Asteraceae), known as yarrow (milenrama), is a plant used in Mexican traditional medicine for the treatment of hypertension, diabetes, and related diseases. AIM: To determine the vasorelaxant and antihypertensive effect of A. millefollium and to isolate the main bioactive antihypertensive agents. MATERIALS AND METHODS: Organic (hexane, dichloromethane and methanol) and hydro-alcohol (Ethanol-H2O: 70:30) extracts obtained from flowers, leaves and stems were evaluated on isolated aorta rat rings with and without endothelium to determine their vasorelaxant effect. Hexane extract from flowers (HEAmF) was studied to evaluate its antihypertensive effect on spontaneously hypertensive rats (SHR). From HEAmF, bioactive compounds were obtained by bio-guided phytochemical separation through chromatography. RESULTS: Organic extracts showed the best vasorelaxant activity. Hexane extract from flowers was the most potent and efficient ex vivo vasorelaxant agent, showing significant decrease of systolic and diastolic blood pressure in SHR (p < 0.05). Phytochemical separation of HEAmF yielded two epimeric sesquiterpene lactones: leucodin (1) and achillin (2), the major components of the extract. Both 1 and 2 showed similar vasorelaxant action ex vivo (p < 0.05), and their effects where modified by L-NAME (10 µM, nitric oxide synthase inhibitor), by ODQ (1 µM, soluble guanylyl cyclase inhibitor), and also relaxed the contraction induced by KCl (80 mM). Finally, 1 and 2 intragastric administration (50 mg/kg) decreased systolic and diastolic blood pressure in SHR. CONCLUSIONS: Achillea millefolium showed antihypertensive and vasorelaxant effects, due mainly to leucodin and achillin (epimers). Both compounds showed antihypertensive activity by vasorelaxation putatively by endothelium-dependent NO release and cGMP increase, as well as by calcium channels blockade.


Assuntos
Achillea/química , Anti-Hipertensivos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Vasodilatadores/farmacologia , Animais , Anti-Hipertensivos/uso terapêutico , Aorta/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio/metabolismo , Simulação por Computador , Frequência Cardíaca/efeitos dos fármacos , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/química , Oxidiazóis/farmacologia , Extratos Vegetais/uso terapêutico , Quinoxalinas/farmacologia , Ratos Endogâmicos SHR , Ratos Wistar , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/uso terapêutico , Vasodilatadores/uso terapêutico
7.
Eur J Pharmacol ; 883: 173252, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32534078

RESUMO

Type 2 diabetes (T2D) is a metabolic disease characterized by defects in glycemia regulation. This disease is associated with alterations in insulin action and lipid metabolism, generating hyperglycemia and dyslipidemias. Currently, it is necessary to develop new or known drugs that promote the sensitization of insulin action. Thus, activation of peroxisome proliferator-activated receptors (PPARs) is probably the key to doing this. PPARs participate in maintaining an energetic balance between storage and the expenditure of energy. The activation of PPARγ produces the storage of energy, mainly as glycogen and fat. Meanwhile, PPARα activation promotes lipid degradation. Oleanolic acid (OA), a pentacyclic triterpenoid of numerous edible and medicinal plants, decreases hyperglycemia and lipid accumulation. However, the effects on PPARs and their regulated genes are unknown. Our aim was to determine the effects of OA on PPAR γ/α expression and their regulated genes (adiponectin, type 4 glucose transporter, fatty acid transport protein, and long-chain acyl-CoA synthetase) in C2C12 myoblasts by RT-PCR, Western blot, GLUT-4 translocation, and lipid storage in 3T3-L1 adipocytes. In C2C12 myoblasts, OA increased the expression of mRNA in both PPARγ/α and their regulated genes; also, PPARγ, GLUT-4, and FATP-1 protein expression increased, as well as GLUT-4 translocation. In 3T3-L1, OA increased the expression of mRNA in both PPARγ/α and maintained lipid storage unchanged. In conclusion, OA exhibited a dual action on PPARγ/α, which might explain in part its antihyperglycemic effect. This compound represents an alternative for designing novel therapeutic strategies in the control of T2D.


Assuntos
Adipócitos/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Hipoglicemiantes/farmacologia , Hipolipemiantes/farmacologia , Mioblastos Esqueléticos/efeitos dos fármacos , Ácido Oleanólico/farmacologia , PPAR alfa/agonistas , PPAR gama/agonistas , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/tratamento farmacológico , Dislipidemias/metabolismo , Regulação da Expressão Gênica , Transportador de Glucose Tipo 4/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Mioblastos Esqueléticos/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Transporte Proteico , Transdução de Sinais
8.
Planta Med ; 85(5): 412-423, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30650453

RESUMO

Hibiscus sabdariffa is a medicinal plant consumed as a diuretic and anti-obesity remedy. Several pharmacological studies have shown its beneficial effects in metabolism. Peroxisome proliferator-activated receptors δ and γ may play a role in the actions of H. sabdariffa. These nuclear receptors regulate lipid and glucose metabolism and are therapeutic targets for type 2 diabetes. This research aimed to perform a phytochemical study guided by a bioassay from H. sabdariffa to identify compounds with peroxisome proliferator-activated receptor δ and peroxisome proliferator-activated receptor γ agonist activity, supported by messenger ribonucleic acid expression, molecular docking, lipid accumulation, and an antihyperglycemic effect. An oral glucose tolerance test in mice with the aqueous extract of H. sabdariffa and the dichloromethane extract of H. sabdariffa was performed. The dichloromethane extract of H. sabdariffa exhibited an antihyperglycemic effect. The dichloromethane extract of H. sabdariffa was fractioned, and four fractions were evaluated in 3T3-L1 adipocytes on peroxisome proliferator-activated receptor δ, peroxisome proliferator-activated receptor γ, fatty acid transporter protein, and glucose transporter type 4 messenger ribonucleic acid expression. Fraction F3 exhibited peroxisome proliferator-activated receptor δ/γ dual agonist activity, and a further fractionation yielded two subfractions, F3-1 and F3-2, which also increased peroxisome proliferator-activated receptor δ and peroxisome proliferator-activated receptor γ expression. Subfractions were analyzed by GC/MS. The main compounds identified in F3-1 were linoleic acid, oleic acid, and palmitic acid, while in F3-2, the main compounds identified were α-amyrin and lupeol. These molecules were subjected to molecular docking analysis. α-Amyrin and lupeol showed the highest affinity. Moreover, both produced an increase in peroxisome proliferator-activated receptor δ, peroxisome proliferator-activated receptor γ, fatty acid transporter protein, and glucose transporter type 4 expression. Additionally, α-amyrin and lupeol decreased lipid accumulation in 3T3-L1 adipocytes and blood glucose in mice. Until now, α-amyrin and lupeol have not been reported with activity on peroxisome proliferator-activated receptors. This study provides evidence that α-amyrin and lupeol possess antidiabetic effects through a peroxisome proliferator-activated receptor δ/γ dual agonist action.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hibiscus/química , Hipoglicemiantes/farmacologia , Ácido Oleanólico/análogos & derivados , Triterpenos Pentacíclicos/farmacologia , Triterpenos/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Transportador de Glucose Tipo 4/genética , Masculino , Camundongos , Simulação de Acoplamento Molecular , Ácido Oleanólico/farmacologia , PPAR delta/agonistas , PPAR gama/agonistas , Plantas Medicinais , RNA Mensageiro/genética
9.
Biomed Pharmacother ; 90: 53-61, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28342366

RESUMO

The design of compounds 1 and 2 was based on the similar scaffold of pharmacophoric groups for PPARγ and GPR40 agonists. In order to find new compounds with improved biological activity, the current manuscript describes a new dual PPARγ-GPR40 agonist. We synthesized two compounds, which were prepared following a multistep synthetic route, and the relative mRNA expression levels of PPARγ, GLUT4, and GPR40 were quantified in cell culture, as well as insulin secretion and [Ca2+] intracellular levels. Compound 1 showed a 7-times increase in the mRNA expression of PPARγ, which in turn enhanced the expression levels of GLUT4 respect to control and pioglitazone. It also showed an increase of 2-fold in the [Ca2+]i level allowing an increment on insulin release, being as active as the positive control (glibenclamide), causing also an increase of 2-fold in mRNA expression of GPR40. Furthermore, the compound 2 showed lower activity than the compound 1. The ester of 1 showed antidiabetic activity at a 50mg/kg single dose in streptozotocin-nicotinamide-induced diabetic mice model. In addition, we achieved a molecular docking study of compound 1 on PPARγ and GPR40 receptors, showing a great affinity for both targets. We observed important polar interactions between the carboxylic group and main residues into the binding pocket. Therefore, the compound 1 has a potential for the development of antidiabetic agents with newfangled dual action.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , PPAR gama/agonistas , Receptores Acoplados a Proteínas G/agonistas , Células 3T3 , Animais , Glicemia/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Avaliação de Medicamentos , Teste de Tolerância a Glucose/métodos , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Masculino , Camundongos , Simulação de Acoplamento Molecular , Pioglitazona , RNA Mensageiro/metabolismo , Tiazolidinedionas/farmacologia
10.
Biomed Pharmacother ; 83: 667-675, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27470567

RESUMO

Flavonoids from medicinal plants have been used in traditional medicine to treat a variety of prevalent diseases. Flavones activate the signaling pathways promoting fuel metabolism and insulin sensitizing in hepatocytes and adipocytes, which suggests that flavones may have the potential to exert in vivo antidiabetic and antihyperlipidemic effects. Thus, the aim of the current study was to determine the antidiabetic, antihyperlipidemic and anti-inflammatory effects of tilianin in diabetic rats. Also, to understand the mechanism involved using in vitro 3T3-L1 cells and tissues from experimental animals treated with test samples through molecular profile studies. Non insulin-dependent diabetic mellitus (NIDDM) rats were treated over a short period (for 10 days) with 60mg/Kg/day of tilianin. After treatment, a biochemical blood profile was determined. Also, adipose and thoracic aortic tissues were used to determine pro-inflammatory profile, adiponectin and adhesion molecules by real-time PCR. In 3T3-L1 cells pretreated with tilianin (10µM), PPARα, PPARγ, GLUT4, FATP-1 and ACSL-1 mRNA expression were measured. In order to explain the potential PPARα interaction with tilianin, a docking study with PPARα was carried out. Thus, intragastric administration of tilianin and metformin induced a decrease in plasma glucose (GLU) in diabetic rats on day 6, and remained significantly lower until the end of the treatment; also blood triacylglycerides (TAG) and cholesterol (CHOL) (p<0.05) were diminished. Moreover, IL-1ß and IL-18 expression was significantly decreased in adipose tissue (p<0.05); meanwhile adiponectin was significantly overexpressed (p<0.05). Besides, ICAM-1 expression was significantly reduced in aortic tissue (p<0.05). In 3T3-L1 cells it was found that tilianin increased PPARα and ACSL1 mRNA levels (p<0.05). Finally, tilianin docking studies with PPARα showed polar interactions with Glu269, Tyr314, His 440 and Tyr464 residues. In conclusion, short-term tilianin treatment might exert its antidiabetic and antihyperlipidemic effect by modulating a pro-inflammatory profile, and increasing adiponectin expression. In addition, our results suggest the possible interaction of tilianin with PPARα.


Assuntos
Anti-Inflamatórios/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Flavonoides/uso terapêutico , Glicosídeos/uso terapêutico , Hipoglicemiantes/uso terapêutico , Hipolipemiantes/uso terapêutico , Células 3T3-L1 , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/genética , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Masculino , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Simulação de Acoplamento Molecular , Niacinamida , Oxirredução/efeitos dos fármacos , Ratos Wistar , Estreptozocina
11.
Int J Mol Sci ; 15(7): 11473-94, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24979131

RESUMO

Obesity, from children to the elderly, has increased in the world at an alarming rate over the past three decades, implying long-term detrimental consequences for individual's health. Obesity and aging are known to be risk factors for metabolic disorder development, insulin resistance and inflammation, but their relationship is not fully understood. Prevention and appropriate therapies for metabolic disorders and physical disabilities in older adults have become a major public health challenge. Hence, the aim of this study was to evaluate inflammation markers, biochemical parameters and glucose homeostasis during the obese-aging process, to understand the relationship between obesity and health span during the lifetime. In order to do this, the monosodium glutamate (MSG) obesity mice model was used, and data were evaluated at 4, 8, 12, 16 and 20 months in both female and male mice. Our results showed that obesity was a major factor contributing to premature alterations in MSG-treated mice metabolism; however, at older ages, obesity effects were attenuated and MSG-mice became more similar to normal mice. At a younger age (four months old), the Lee index, triglycerides, total cholesterol, TNF-α and transaminases levels increased; while adiponectin decreased and glucose tolerance and insulin sensitivity levels were remarkably altered. However, from 16 months old-on, the Lee index and TNF-α levels diminished significantly, while adiponectin increased, and glucose and insulin homeostasis was recovered. In summary, MSG-treated obese mice showed metabolic changes and differential susceptibility by gender throughout life and during the aging process. Understanding metabolic differences between genders during the lifespan will allow the discovery of specific preventive treatment strategies for chronic diseases and functional decline.


Assuntos
Obesidade/metabolismo , Glutamato de Sódio/toxicidade , Adiponectina/sangue , Fatores Etários , Animais , Colesterol/sangue , Feminino , Interleucina-6/sangue , Masculino , Camundongos , Obesidade/etiologia , Fatores Sexuais , Transaminases/sangue , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/sangue
12.
Chem Biol Drug Des ; 81(4): 474-83, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23289972

RESUMO

A small series of thiazolidine-2,4-dione and barbituric acid derivatives 1-4 was prepared using a short synthetic route, and all compounds were characterized by elemental analysis, mass spectrometry, and NMR ((1)H, (13)C) spectroscopy. Their in vitro relative expression of peroxisome proliferator-activated receptor α and peroxisome proliferator-activated receptor γ was evaluated. Compound 1 showed an increase in the mRNA expression of both peroxisome proliferator-activated receptor isoforms, as well as the GLUT-4 levels. The antidiabetic activity of compound 1 was determined at 50 mg/kg single dose using a non-insulin-dependent diabetes mellitus rat model. The results indicated a significant decrease in plasma glucose levels. Additionally, we performed a molecular docking of compound 1 into the ligand binding pocket of peroxisome proliferator-activated receptor α and peroxisome proliferator-activated receptor γ. In these binding models, compound 1 may bind into the active site of both isoforms showing important short contacts with the peroxisome proliferator-activated receptor γ residues: Tyr 473, His 449, Ser 289, His 323; and peroxisome proliferator-activated receptor α residues: Tyr 464, His 440, Ser 280 and Tyr 314.


Assuntos
Barbitúricos/química , Hipoglicemiantes/química , Nitrilas/química , PPAR alfa/metabolismo , PPAR gama/metabolismo , Tiazolidinedionas/química , Tiazolidinas/química , Células 3T3-L1 , Animais , Barbitúricos/farmacologia , Sítios de Ligação , Glicemia/análise , Domínio Catalítico , Diabetes Mellitus Experimental/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Humanos , Ligação de Hidrogênio , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Masculino , Camundongos , Simulação de Acoplamento Molecular , Nitrilas/farmacologia , Nitrilas/uso terapêutico , PPAR alfa/agonistas , PPAR alfa/genética , PPAR gama/agonistas , PPAR gama/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Tiazolidinas/farmacologia , Tiazolidinas/uso terapêutico , Transcrição Gênica/efeitos dos fármacos
13.
Eur J Pharmacol ; 689(1-3): 270-7, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22732655

RESUMO

Glycine strongly reduces the serum levels of pro-inflammatory cytokines and increases the levels of anti-inflammatory cytokines. Recently, glycine has been shown to decrease the expression and secretion of pro-inflammatory adipokines in monosodium glutamate-induced obese (MSG/Ob) mice. It has been postulated that these effects may be explained by a reduction in nuclear factor kappa B (NF-κB) activation. NF-κB is a transcription factor, which is crucial to the inflammatory response. Hasegawa et al. (2011 and 2012) recently reported a glycine-dependent reduction in NF-κB levels. Here, we have investigated the role of glycine in the regulation of NF-κB in differentiated 3T3-L1 adipocytes. The results revealed that pretreatment with glycine interfered with the activation of NF-κB, which has been shown to be stimulated by tumor necrosis factor-alpha (TNF-α). Glycine alone stimulated NF-κB activation in an unusual way such that the inhibitor κB-ß (IκB-ß) degradation was more significant than that of the inhibitor κB-α (IκB-α) and led to NF-κB complexes comprised of p50 and p65 subunits; IκB-ε degradation did not affect by glycine. These findings suggest that glycine could be used as an alternative treatment for chronic inflammation, which is a hallmark of obesity and other comorbidities, and is characterized by an elevated production of pro-inflammatory cytokines.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Diferenciação Celular/fisiologia , Glicina/farmacologia , NF-kappa B/antagonistas & inibidores , Fator de Necrose Tumoral alfa/biossíntese , Células 3T3-L1 , Adipócitos/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores
14.
Basic Clin Pharmacol Toxicol ; 108(6): 406-13, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21205225

RESUMO

The monosodium glutamate (MSG) neonatal administration in mice provides a model of obesity with impaired glucose tolerance (IGT) and insulin resistance. However, the inflammatory profile of cytokines produced from fat tissue and its relationship to the metabolic dysfunction induced by MSG have not yet been revealed. The aim of this study was to establish the inflammatory profile attributed to MSG by measuring the expression of adipokines in visceral fat and serum of 19-week-old mice as well as the peroxisome proliferator-activated receptors alpha and gamma (PPARα and γ). Some metabolic and biochemical parameters were also quantified. The MSG increased mRNA expression of interleukin-6 (IL-6), tumour necrosis factor-alpha (TNFα), resistin and leptin, but adiponectin did not exhibit any changes. In addition, impaired glucose tolerance, increased levels of insulin, resistin and leptin were observed in serum. Both PPARα and PPARγ were activated in MSG-induced obese mice, which might explain its inflammatory profile. However, liver transaminases were severely depressed, indicating that MSG may also induce liver injury, contributing to inflammation. The MSG neonatal neuro-intoxication in mice may thus provide a model of obesity and inflammation characterized by the dual activation of PPARα and PPARγ, which might offer new insights into the mechanism of inflammatory diabetes in obesity leading to steatohepatitis, as well as a suitable model to study the role of new therapeutic agents to prevent or reduce insulin resistance, the inflammatory state and liver steatosis.


Assuntos
Aditivos Alimentares/toxicidade , Inflamação/metabolismo , Obesidade/induzido quimicamente , Obesidade/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Glutamato de Sódio/toxicidade , Adiponectina/sangue , Tecido Adiposo/fisiopatologia , Envelhecimento/patologia , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/complicações , Feminino , Aditivos Alimentares/metabolismo , Inflamação/sangue , Inflamação/complicações , Insulina/sangue , Resistência à Insulina/fisiologia , Gordura Intra-Abdominal/fisiopatologia , Masculino , Camundongos , Camundongos Obesos , Obesidade/complicações , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , RNA Mensageiro/metabolismo , Glutamato de Sódio/metabolismo
15.
J Ethnopharmacol ; 114(1): 66-71, 2007 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-17765418

RESUMO

The aim of the present investigation was determine whether a standardized Hibiscus sabdariffa calyces aqueous extract has an effect on body weight in an obese animal model induced by the administration of monosodium glutamate. Hibiscus sabdariffa aqueous extract, containing 33.64 mg of total anthocyanins per each 120 mg of extract, was orally administered (120 mg/kg/day) for 60 days to healthy and obese mice, and body weight gain, food and liquid intake, aspartate aminotransferase (AST), alanine aminotransferase (ALT), cholesterol, and triglycerides levels were measured. Hibiscus sabdariffa administration significantly reduced body weight gain in obese mice and increased liquid intake in healthy and obese mice. ALT levels were significantly increased on the 15th and 45th days in obese mice, but AST levels did not show significant changes. Mortality was not observed in the Hibiscus sabdariffa treated groups. Triglycerides and cholesterol levels showed non-significant reductions in animals treated with Hibiscus sabdariffa. Our data confirm the anti-obesity effect of Hibiscus sabdariffa reported by the Mexican population.


Assuntos
Hibiscus/química , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Alanina Transaminase/sangue , Alanina Transaminase/efeitos dos fármacos , Animais , Antocianinas/farmacologia , Aspartato Aminotransferases/sangue , Aspartato Aminotransferases/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Modelos Animais de Doenças , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Flores , Camundongos , Glutamato de Sódio , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...